SCIEX Addresses Food Safety Issues in Dairy Industry

*By: Lauryn Bailey

Milk is one of the most consumed foods globally, but also a problematic one in terms of food safety. Its rich-in-protein quality makes it as one of the ‘Big Eight’ allergenic foods, accounting for 90% of all food allergies.

In recent years, there have been a number of dairy product contamination cases in Asia Pacific and the rest of the world.For instance, the aftermath of the notorious 2008 incident in China where baby formulae were laced with toxic chemical melamine still looms over local consumers today.

The less high-profile dicyandiamide (DCD) scare in New Zealand in 2013 sent the entire dairy industry into a testing frenzy.

The most recent milk case involving a threat to inject toxic monofluoroacetic acid (1080) into dairy products in the country, branded as ‘bio-terrorism’, again puts the government, the industry, and consumers on high alert.

What makes milk so problematic?

Dairy products are vulnerable to food safety issues simply because they are subject to a variety of potential threats.

In recent years, the dairy industry has seen this number on the rise. In some cases, a cheap, inferior ingredient is used to manufacture or process dairy products; sometimes an excess amount of additives, such as preservatives, are added to fraudulently enhance the protein content, coloring, or flavor of a dairy product or to simply prolong its lifespan.

Testing technologies

The confluence of afore-mentioned issues has contributed to milk’s not-so-stellar reputation as a ‘problematic food” for consumers.

For SCIEX customers, some of the most requested testing involves compound 1080 due to the recent scare in New Zealand, vitamins, residues, gangliosides, various contaminants, and for nutritional quality control.

Limitations of current systems

The workflow of conventional technologies for food testing is straightforward: the chemist tells the analytical lab instrument what compounds to look for, and the instrument works to find them.

This method has been in use for many years and still a big part of what laboratory scientists are doing now. However, when considering unknown compounds, say a dairy sample contains multiple harmful compounds, including proteins, antibiotics or toxic chemicals, which are not known to the manufacturer or the chemist, it could pose a challenge.

Specificity of the analytical test tells the scientist how certain the test is in accurately identifying the presence of a particular compound. Many traditional analytical food testing techniques deliver limited specificity, and could result in false results.

MS systems

The overarching merits of MS systems in enabling food testing boil down to its capabilities to find targeted chemical contaminants with very high specificity, powerful enough to perform routine monitoring of high-risk, known chemical contaminants, and with the added ability to survey food samples for any unknown chemical compounds, including environmental contaminants (e.g. pathogens), adulterants (eg. melamine, DCD, 1080), chemical by-products (eg. whey), or metabolites (eg. fungal metabolites).

Currently there are several types of high resolution MS systems that are in vogue in food testing labs to search for organic or chemical contaminants.

Expediting solution development

In the past, SCIEX has worked with the likes of the US Food and Drug Administration (FDA), the European Director for Health and Consumers (DG SANCO), and the Chinese General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) on addressing various food-related concerns.

Through cooperation as such, the company has been able to unveil a number of reliable and accurate laboratory-based methods for detecting contaminants in dairy products.


Farmers and companies should strive to achieve the highest standards and implement solid procedures within their businesses; governments need to be supportive of the dairy industry by enacting new laws, regulations and policies that safeguard safety of a dairy product; the testing companies should supply reliable technologies and methods should a testing need arise.

In this process, advanced technologies and instruments also play a crucial role in equipping food safety scientists, food processors, and regulators to quickly respond to, or even better, proactively prevent those potential crises from occurring en masse.

PhD, Global Marketing Manager, Food & Environmental Markets, SCIEX *

Share Button

Webmaster LBA

Food Marketing & Technology is a monthly magazine published by L.B. Associates Pvt Ltd

Comments are closed